578 research outputs found

    Production cross-sections and momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV

    Full text link
    We have measured production cross sections and longitudinal momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV. The production cross-sections show excellent agreement with the predictions of the semiempirical formula EPAX. We have compared these results, involving extremly neutron deficient nuclei, with model calculations to extract informa tion about the response of these models close to the driplines. The longitudinal momentum distributions have also been extracted and are compared with the Goldhaber and Morrissey systematics.Comment: 16 pages, 6 figure

    Performances of multi-gap timing RPCs for relativistic ions in the range Z=1-6

    Full text link
    We present the performance of Multi-gap timing RPCs under irradiation by fully stripped relativistic ions (gamma*beta=2.7, Z=1-6). A time resolution of 80 ps at high efficiency has been obtained by just using standard `off the shelf' 4-gap timing RPCs from the new HADES ToF wall. The resolution worsened to 100 ps for ~ 1 kHz/cm2 proton flux and for ~ 100 Hz/cm2 Carbon flux. The chambers were operated at a standard field of E=100 kV/cm and showed a high stability during the experiment, supporting the fact that RPCs are a convenient choice when accommodating a very broad range of ionizing particles is needed. The data provides insight in the region of very highly ionizing particles (up to x 36 mips) and can be used to constrain the existing avalanche and Space-Charge models far from the usual `mip valley'. The implications of these results for the general case of detection based on secondary processes (n, gamma) resulting in highly ionizing particles with characteristic energy distributions will be discussed, together with the nature of the time-charge correlation curve.Comment: 31 pages, 19 figures, submitted to JINS

    Design, manufacturing and set-up tests of a wave energy converter prototype in the context of the European Project LIFE-Demowave

    Get PDF
    LifeDemoWave Project is a real case of development of a R&D project, from the initial idea to the final construction and installation of a prototype for testing in operational environment. This project was born from an idea of the main researcher of the CIMA Group that finally led to two patents of two wave generation systems. Based on these patents, CIMA sought different ways for funding with the aim of developing prototypes with a high TRL and being able to test the operating principle of the patented systems. Finally, funding was obtained through the Life Program of the European Union and in collaboration with five other partners. The main objective of the LifeDemoWave project (http://www. life-demowave.eu/en/) is the demonstration of the feasibility of the use of wave power for electric generation in order to reduce greenhouse gases' emissions. For demonstration purposes, prototypes of wave power generation, reproducible and scalable at high level, are installed in the Galician coast. LifeDemoWave project considers, as well as its design and implementation, the environmental impact in the installation areas and its effect on biodiversity.Peer Reviewe

    Geant4-GATE Simulation of a Large Plastic Scintillator for Muon Radiography

    Get PDF
    Envisaging the possibility of using large-area plastic scintillator slabs as robust detectors for high spatial resolution muon radiography, and prior to prototype development, we study expected basic performance by Monte Carlo simulation. We present preliminary results for a scalable square footprint detector unit of similar to 1 m(2), defining a representative simulation model volume of 50 cm x 50 cm, with reflective surfaces and a light readout by direct coupling of 4 small PMTs (in a square arrangement) at one face of the scintillator slab. Light detection efficiency is calculated for several light collection configurations, considering different values of surface roughness, reflectivity, optical coupling index and scintillator thickness. Values maximizing photon detection have been identified. The light response function of 2.5-3.5 cm diameter PMTs for the proposed configuration has been determined. A detector intrinsic spatial resolution of the order of 1 cm is estimated for muon interactions at the center region of the detector module, using a simple centroid positioning algorithm (Anger logic)

    The mechanical design of the BARREL section of the detector CALIFA

    Get PDF

    Experimental Indications for the Response of the Spectators to the Participant Blast

    Full text link
    Precise momentum distributions of identified projectile fragments, formed in the reactions 238U + Pb and 238U + Ti at 1 A GeV, are measured with a high-resolution magnetic spectrometer. With increasing mass loss, the velocities first decrease as expected from previously established systematics, then level off, and finally increase again. Light fragments are on the average even faster than the projectiles. This finding is interpreted as the response of the spectators to the participant blast. The re-acceleration of projectile spectators is sensitive to the nuclear mean field and provides a new tool for investigating the equation of state of nuclear matter.Comment: 7 pages, 3 figures, background information on http://www-wnt.gsi.de/kschmidt

    Experimental study of fragmentation products in the reactions 112Sn + 112Sn and 124Sn + 124Sn at 1 AGeV

    Full text link
    Production cross-sections and longitudinal velocity distributions of the projectile-like residues produced in the reactions 112Sn + 112Sn and 124Sn + 124Sn both at an incident beam energy of 1 AGeV were measured with the high-resolution magnetic spectrometer, the Fragment Separator (FRS) of GSI. For both reactions the characteristics of the velocity distributions and nuclide production cross sections were determined for residues with atomic number Z ≄\geq 10. A comparison of the results of the two reactions is presented.Comment: 14 pages, 12 figure

    Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of 238^{238}U projectiles at 1 A GeV

    Full text link
    The production of heavy neutron-rich nuclei has been investigated using cold fragmentation reactions of 238^{238}U projectiles at relativistic energies. The experiment performed at the high-resolving-power magnetic spectrometer FRS at GSI allowed to identify 45 new heavy neutron-rich nuclei: 205^{205}Pt, 207−210^{207-210}Au, 211−216^{211-216}Hg, 213−217^{213-217}Tl, 215−220^{215-220}Pb, 219−224^{219-224}Bi, 221−227^{221-227}Po, 224−229^{224-229}At, 229−231^{229-231}Rn and 233^{233}Fr. The production cross sections of these nuclei were also determined and used to benchmark reaction codes that predict the production of nuclei far from stability.Comment: 5 pages, 2 figure

    Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains

    Get PDF
    The proton-unbound argon and chlorine isotopes have been studied by measuring trajectories of their decay-in-flight products by using a tracking technique with micro-strip detectors. The proton (1p) and two-proton (2p) emission processes have been detected in the measured angular correlations “heavy-fragment”+p and “heavy-fragment”+p+p, respectively. The ground states of the previously unknown isotopes 30Cl and 28Cl have been observed for the first time, providing the 1p separation energies Sp of −0.48(2) and −1.60(8) MeV, respectively. The relevant systematics of 1p and 2p separation energies have been studied theoretically in the core+p and core+p+p cluster models. The first-time observed excited states of 31Ar allow to infer the 2p-separation energy S2p of 6(34) keV for its ground state. The first-time observed state in 29Ar with S2p = −5.50(18) MeV can be identified either as a ground or an excited state according to different systematics.Helmholtz Association grant IK-RU-002Helmholtz International Center for FAIR HIC for FAIRRussian Science Foundation grant No. 17-12-01367Polish National Science Center Contract No. UMO- 2015/17/B/ST2/00581Polish Ministry of Science and Higher Education Grant No. 0079/DIA/2014/43, Grant DiamentowyHelmholtz- CAS Joint Research Group grant HCJRG-10
    • 

    corecore